2,269 research outputs found

    Physical Aspects of Colour

    Get PDF

    Zinc Deficiency, Carbonic Anhydrase, and Photosynthesis in Leaves of Spinach

    Full text link

    Can you sense it?:Customer Experience at the Next Level

    Get PDF

    Patches in a side-by-side configuration: a description of the flow and deposition fields

    Get PDF
    In the last few decades, a lot of research attention has been paid to flow-vegetation interactions. Starting with the description of the flow field around uniform macrophyte stands, research has evolved more recently to the description of flow fields around individual, distinct patches. However, in the field, vegetation patches almost never occur in isolation. As such, patches will influence each other during their development and interacting, complex flow fields can be expected. In this study, two emergent patches of the same diameter (D = 22 cm) and a solid volume fraction of 10% were placed in a side-by-side configuration in a lab flume. The patches were built as an array of wooden cylinders, and the distance between the patches (gap width Delta) was varied between Delta = 0 and 14 cm. Flow measurements were performed by a 3D Vectrino Velocimeter (Nortek AS) at mid-depth of the flow. Deposition experiments of suspended solids were performed for selected gap widths. Directly behind each patch, the wake evolved in a manner identical to that of a single, isolated patch. On the centerline between the patches, the maximum velocity U-max was found to be independent of the gap width Delta. However, the length over which this maximum velocity persists, the potential core L-j, increased linearly as the gap width increased. After the merging of the wakes, the centerline velocity reaches a minimum value U-min. The minimum centerline velocity decreased in magnitude as the gap width decreased. The velocity pattern within the wake is reflected in the deposition patterns. An erosion zone occurs on the centerline between the patches, where the velocity is elevated. Deposition occurs in the low velocity zones directly behind each patch and also downstream of the patches, along the centerline between the patches at the point of local velocity minimum. This downstream deposition zone, a result of the interaction of neighbouring patch wakes, may facilitate the establishment of new vegetation, which may eventually inhibit flow between the upstream patches and facilitate patch merger

    Impact of vegetation die-off on spatial flow patterns over a tidal marsh

    Get PDF
    Large-scale die-off of tidal marsh vegetation, caused by global change, is expected to change flow patterns over tidal wetlands, and hence to affect valuable wetland functions such as reduction of shoreline erosion, attenuation of storm surges, and sedimentation in response to sea level rise. This study quantified for the first time the effects of large-scale (4 ha) artificial vegetation removal, as proxy of die-off, on the spatial flow patterns through a tidal marsh channel and over the surrounding marsh platform. After vegetation removal, the flow velocities measured on the platform increased by a factor of 2 to 4, while the channel flow velocities decreased by almost a factor of 3. This was associated with a change in flow directions on the platform, from perpendicular to the channel edges when vegetation was present, to a tendency of more parallel flow to the channel edges when vegetation was absent. Comparison with hydrodynamic model simulations explains that the vegetation-induced friction causes both flow reduction on the vegetated platform and flow acceleration towards the non-vegetated channels. Our findings imply that large-scale vegetation die-off would not only result in decreased platform sedimentation rates, but also in sediment infilling of the channels, which together would lead to further worsening of plant growth conditions and a potentially runaway feedback to permanent vegetation loss. Citation: Temmerman, S., P. Moonen, J. Schoelynck, G. Govers, and T. J. Bouma (2012), Impact of vegetation die-off on spatial flow patterns over a tidal marsh, Geophys. Res. Lett., 39, L03406, doi: 10.1029/2011GL050502

    Interaction between hydrodynamics and seagrass canopy structure: Spatially explicit effects on ammonium uptake rates

    Get PDF
    The hypotheses that (1) different seagrass morphologies may facilitate different nutrient uptake rates under similar hydrodynamic forcing and (2) this effect on nutrient uptake rates is spatially explicit, with the highest uptake rates at edges of patches, where currents and turbulence are highest, were examined under unidirectional flow conditions.We thank Jos van Soelen, Bas Koutstaal, and Louie Haazen for invaluable technical assistance. In addition, we are grateful to Britta Gribsholt, Bart Veuger, Miguel Bernal, Juan Jose Vergara, and Alfredo Izquirdo for helpful discussion. In addition, we thank Josef D. Ackerman and the anonymous reviewers for comments that greatly improved the manuscript. This work and the first author were supported by an EU Marie Curie host fellowship for transfer of knowledge, MTKD-CT-2004-509254, and the Spanish national project EVAMARIA, CTM2005-00395/MAR. F.G.B. holds an EU Marie Curie individual fellowship, MEIF-CT-2005-515071. This is publication 4251 of the Netherlands Institute of Ecology (NIOO-KNAW)

    Potential uptake of dissolved organic matter by seagrasses and macroalgae

    Get PDF
    Dissolved organic nitrogen (DON) acts as a large reservoir of fixed nitrogen. Whereas DON utilization is common in the microbial community, little is known about utilization by macrophytes. We investigated the ability of the coexisting temperate marine macrophytes Zostera noltii, Cymodocea nodosa, and Caulerpa prolifera to take up nitrogen and carbon from small organic substrates of different molecular complexities (urea, glycine, L-leucine, and L-phenylalanine) and from dissolved organic matter (DOM) derived from algal and bacterial cultures (substrates with a complex composition). In addition to inorganic nitrogen, nitrogen from small organic substrates could be taken up in significant amounts by all macrophytes. Substrate uptake by the aboveground tissue differed from that of the belowground tissue. No relationships between carbon and nitrogen uptake of small organics were found. The preference for individual organic substrates was related to their structural complexity and C:N ratio. Uptake of algae-derived organic nitrogen was of similar magnitude as inorganic nitrogen, and was preferred over bacteria-derived nitrogen. These results add to the growing evidence that direct or quick indirect DON utilization may be more widespread among aquatic macrophytes than traditionally thought.This research was supported by the regional government of Andalusia project FUNDIV (P07-RNM-2516), the Spanish Project CTM2008-00012/MAR, a European Reintegration Grant (MERG-CT-2007-205675), a travel grant from Schure-Beijerinck-Popping Fund (SBP/JK/2007-32) and the Netherlands Organization for Scientific Research. Thanks to Fidel Echevarrìa Navas (Director of CACYTMAR) for granting us access to facilities, and to Bas Koutstaal for helping with sample processing. We also thank the anonymous reviewers for their valuable comments which significantly improved this manuscript
    corecore